Your cart is currently empty!
Level: Board
Board Level
SOME NATURAL PHENOMENA | Assess
SOME NATURAL PHENOMENA | Study
SOUND | Assess
Surface Areas and Volumes | Assess
SURFACE AREAS AND VOLUMES | Assess
Surface Areas and Volumes | Study
Symmetry | Assess
Symmetry | Assess
Symmetry | Study
SOME NATURAL PHENOMENA | Assess
Assessment Tools
Assign | Assess | Analyse
Quick Quiz
Objective Assessment
Question Bank
List Of Questions With Key, Aswers & Solutions
Back To Learn
Re – Learn
Go Back To Learn Again
SOME NATURAL PHENOMENA | Study
Mind Map Overal Idea Content Speed Notes Quick Coverage Some objects can be charged by rubbing with otherobjects. There are two kinds of charges — positive charge and negative charge Like charges repel and unlike charges attract each other. (Scroll down till end of the page) Study Tools Audio, Visual & Digital Content Static Electric readmore
Mind Map
Overal Idea
Content
Speed Notes
Quick Coverage
Some objects can be charged by rubbing with other
objects. There are two kinds of charges — positive charge and negative charge Like charges repel and unlike charges attract each other. (Scroll down till end of the page)Study Tools
Audio, Visual & Digital Content
Static Electric Charges: The electric charges produced due to rubbing are called static electric charges. The electric charges constitute electric current during their motion.
An electroscope may be used to detect whether a body is charged or not.
An electroscope is a deviced used to detect the presence of electric charge.
earthing: The process of transfer of charge from a charged object to the earth is called earthing.
Lightning
Lightning is a sudden, natural and violent phenomenon of creating bright flashes during a thunderstorm.
Lightning occurs due to a high-voltage electric discharge between two clouds or a cloud and the ground, or within a single cloud during a thunderstorm.
The formation of clouds involves friction between water droplets in the atmosphere.
The friction charges the particles in the atmosphere. The negative charges accumulate at the bottom of the cloud and the positive charges at the top.
As the accumulation of the charges increases, the cloud will induce positive charges on the ground nearby.
As the amount of charge increases. This causes an imbalance of charges between a region of a cloud and gorund or another cloud (or in a cloud itself). This imbalance is significant enough to break through air resistance.
Lightning releases an average of one gigajoule of energy.
Lightning strike could destroy life and property.
Protective measures are of utmost importance during lightning strikes.
Taking shelter in interiors (house or other closed places) and vehicles (closed e.g. cars) are the most preferred measures.
Lightning conductors can protect buildings from the effects of lightning.
Earth Quake
A natural phenomenon that cannot be predicted is an earthquake.
The earth consists of three major layers, called the crust, the mantle and the core.
The core is further divided into the inner core and the outer core.
The mantle consists of semi-solid material above which the crust floats.
The crust consists of oceans and continents.
The crust is divided into several parts, called tectonic plates.
The regions where one tectonic plate slides against another are referred to as fault zones, and these are the regions where an earthquake is likely to occur.
Hence, these zones are referred to as seismic zones.
The place in the interior of the earth where an earthquake occurs is the focus, and the region on the surface of the earth that is the closest to focus is likely to experience the largest damage.
This region is called the epicenter of the earthquake.
The instrument that measures the severity of an earthquake is a seismograph.
It basically consists of a drum that rolls and a pendulum with a stylus that traces the waves of an earthquake on a sheet like a graph paper.
The energy released at the focus propagates outwardly in form of waves known as seismic waves. Destructive energy of an earthquake is measured on the Richter scale.
It is a logarithmic scale, ranging from 1 to 10 for indicating the intensity of an earthquake.
The earthquake measuring 7 or more on Richter scale can cause severe damage to life and property. Protective measures for earthquake:
If you are at home:
Take shelter under a table and stay there till shaking stops.Stay away from tall and heavy objects that may fall on you. If you are in bed, do not get up. Protect your head with a pillow.If you are outdoors: Find a clear spot, away from buildings, trees and overhead power lines. Drop to the ground. If you are in a car or a bus, do not come out. Ask the driver to drive slowly to a clear spot. Do not come out till the tremors stop. Moreover, it is advisable to make the structure of buildings simple so that they are ‘Quake Safe’.
Hindi Version Key Terms
Topic Terminology
Term
Important Tables
Table:
.
SOUND | Assess
Mind Map Overal Idea Content Speed Notes Quick Coverage Content Study Tools Content … Key Terms Topic Terminology Term: Important Tables Topic Terminology Term: Assessments Test Your Learning readmore
Mind Map
Overal Idea
Content
Speed Notes
Quick Coverage
Content
Study Tools
Content …
Key Terms
Topic Terminology
Term:
Important Tables
Topic Terminology
Term:
Assessments
Test Your Learning
Surface Areas and Volumes | Assess
Assessment Tools
Assign | Assess | Analyse
Quick Quiz
Objective Assessment
Question Bank
List Of Questions With Key, Aswers & Solutions
Back To Learn
Re – Learn
Go Back To Learn Again
SURFACE AREAS AND VOLUMES | Assess
Assessment Tools
Assign | Assess | Analyse
Quick Quiz
Objective Assessment
Question Bank
List Of Questions With Key, Aswers & Solutions
Back To Learn
Re – Learn
Go Back To Learn Again
Surface Areas and Volumes | Study
Mind Map Overal Idea Content Speed Notes Quick Coverage Content : (Scroll down till end of the page) Study Tools Audio, Visual & Digital Content Cuboid What is a cuboid? Parts And Their Alignment Of A Cuboid Faces The flat surfaces of a cuboid are known as its faces. A cuboid has six faces, and readmore
Mind Map
Overal Idea
Content
Speed Notes
Quick Coverage
Content : (Scroll down till end of the page)
Study Tools
Audio, Visual & Digital Content
Cuboid
What is a cuboid?
- A cuboid is a three-dimensional geometric shape that resembles a rectangular box or a rectangular prism. A cuboid has 3 Pairs of opposite, congruent and parallel rectangular faces, 12 edges, and 8 vertices.
- Note 1: All squares are rectangles.
- Note 2: Cuboid may have one, or Three equal pairs of squares. (Square is a special type of Rectangle.
- Note 3: If All three pairs of faces of a cuboid are squares then it it becomes a Cube.
- Note 4: A cube is a special case of cuboid.
Parts And Their Alignment Of A Cuboid
Faces
The flat surfaces of a cuboid are known as its faces.
A cuboid has six faces, and each face is a rectangle.
These faces are arranged such that three pairs of opposite faces are parallel to each other.
The adjacent faces are perpendicular to each other (i.e., the angle between any two touching faces of a cube is right angle, 90°.
- Note 1: All squares are rectangles.
- Note 2: Rectangle may have one or two pairs of squares.
- Note 3: If All three pairs of faces of a rectangle are squares then it it becomes a Cube.
- Note 4: A cube is a special case of cuboid.
Edges
An edge is a line segment where the two surfaces of a cuboid meet.
There are 12 edges in a cuboid, where three edges meet at each vertex.
All edges form right angles with the adjacent edges and faces.
Vertices
A vertex is a point where the three edges meet. Vertices is the plural of vertex.
Cuboid has eight vertices.
Diagonals
Diagonal of a cuboid is a line segment that joins two opposite vertices.
The cuboid has four space diagonals.
Length of the diagonal of cuboid = √(length2 + breadth2 + height2) units.
Symmetry
Cuboids exhibit high symmetry.
They have rotational symmetry of order 4, meaning that you can rotate them by 90 degrees about their centre and they will look the same.
Features of a Cuboid
It is a three-dimensional, Rectangular figure.
It has 6 faces, 12 edges, and 8 vertices.
All 6 faces are rectangles.
Each vertex meets three faces and three edges.
The edges run parallel to those parallel to it.
All angles of a cuboid are right angles.
Mensuration of Cuboid
Surface Area of a Cuboid
The total surface area of a cuboid is defined as the area of its surface (Appearing face).
The Lateral Surface Area of a Cube.
Imagine yourself sitting in a cuboid shaped room. You can then see the four walls around you. This denotes the lateral surface area of that room.
That is, the lateral surface area of a cuboid shaped room is the area of its four walls, excluding the ceiling and the floor.
The lateral surface area of the cuboid is the sum of areas of its square faces, excluding the area of the top and the bottom face.
So the lateral surface area of a cube = sum of areas of 4 faces = (Length ✕ Height) + (Length ✕ Height) + (Length ✕ Height) + (Breadth ✕ Height) + (Breadth✕ Height)
Derivation of Total Surface Area of a Cuboid
Since the total surface area of a cuboid (TSA) is the area of its surface.
Total surface area of a cuboid = Lateral Surface Area + Area Of Bottom Surface + Area Of Top Surface
Total surface area of a cuboid = Area Of Front Surface + Area Of Back Surface + Area Of Left Srface + Area Of Right Surface + Area Of Bottom Surface + Area Of Top Surface
Total surface area of a cuboid = Lateral Surface Area 2[Area Of Bottom Surface]
Since Area Of Top Surface = + Area Of Bottom Surface We get, Total surface area of a cuboid = Lateral Surface Area + 2[Area Of Top Surface]
TSA = (Length ✕ Height) + (Length ✕ Height) + (Length ✕ Height) + (Breadth ✕ Height) + (Breadth✕ Height) + (Length ✕ Breadth) + (Length ✕ Breadth)
TSA = 2(Length ✕ Height) + 2(Breadth ✕ Height) + 2(Length ✕ Breadth)
TSA = 2[(Length ✕ Height) + (Breadth ✕ Height) + (Length ✕ Breadth)]
The Volume of a Cube
Volume
The volume of a three-dimensional object can be defined as the space required for it.
Similarly, Volume of a cuboid is defined as the space required for the cuboid or the Space occupied by the cuboid.
The volume of a cuboid can be calculated using the formula, V = lbh, where,
l = length, b = breadth or width, h = height
This formula shows that the volume of a cuboid is directly proportional to its length, breadth and height.
The volume is calculated by multiplying the object’s length, breadth, and height.
Hence the volume of the cube = lbh = lenth ✕ breadth ✕ height
Cuboids in Our Daily Life
- Cuboids are commonly used in everyday objects, such as boxes, books, and building blocks.
- They are used in architectural and engineering designs for modeling rooms, buildings, and structures.
- In mathematics and geometry, cuboids serve as fundamental examples for teaching and understanding concepts related to three-dimensional shapes.
Similar Shapes:
- A cube is a special type of cuboid where all sides are equal in length, making it a regular hexahedron.
Real-world Examples:
- A shoebox is an example of a cuboid.
- Most refrigerators, ovens, and TV screens have cuboidal shapes.
- Buildings and houses often have cuboidal rooms.
Fun Fact:
- Cuboids are among the simplest and most familiar three-dimensional shapes, making them a fundamental concept in geometry.
Remember that these notes provide an overview of cuboids, and there are more advanced topics and applications related to this shape in various fields of study.
What is a cube?
A cube is a three-dimensional regular polyhedron characterised by its 6 Identical (Congruent) Squares in which 3 Pairs of them parallel.
Parts And Their Alignment Of In A Cube
Faces
The flat surfaces of a cube are known as its faces.
A cube has six faces, and each face is a perfect square. These faces are arranged such that three pairs of faces are parallel to each other.
The adjacent faces are perpendicular to each other (the angle between any two touching faces of a cube is right angle, 90°.
All the edges have the same length.
A cube also has 8 vertices and 12 edges.
Edges
An edge is a line segment where the two surfaces of a cube meet.
There are twelve edges in a cube, where three edges meet at each vertex.
All edges have equal length and form right angles with the adjacent edges and faces.
Vertices
A vertex is a point where the three edges meet. Vertices is the plural of vertex.
Cube has eight vertices.
Diagonals
The cube has four space diagonals that connect opposite vertices, each of which has a length of √3 times the length of an edge.
Symmetry
Cubes exhibit high symmetry.
They have rotational symmetry of order 4, meaning that you can rotate them by 90 degrees about their centre and they will look the same.
Features of a Cube
It is a three-dimensional, square-shaped figure.
It has 6 faces, 12 edges, and 8 vertices.
All 6 faces are squares with equal area.
All sides have the same length.
Each vertex meets three faces and three edges.
The edges run parallel to those parallel to it.
All angles of a cube are right angles.
Mensuration of Cube
Surface Area of a Cube
The total surface area of a cube is defined as the area of its outer surface.
Derivation of Total Surface Area of a Cube
Since the total surface area of a cube is the area of its outer surface.
total surface area of a cube = 6 ✕ area of one face.
We know that the cube has six square faces and each of the square faces is of the same size, the total surface area of a cube = 6 ✕ area of one face.
Let the length of each edge is “s”.
Area of one square face = length of edge ✕ length of edge
Area of one square face == s ✕ s = s²
Therefore, the total surface area of the cube = 6s²
The total surface area of the cube will be equal to the sum of all six faces of the cube.
The Lateral Surface Area of a Cube.
Imagine yourself sitting in a cube shaped room. You can then see the four walls around you. This denotes the lateral surface area of that room.
That is, the lateral surface area of a cube shaped room is the area of its four walls, excluding the ceiling and the floor.
The lateral surface area of the cube is the sum of areas of its square faces, excluding the area of the top and the bottom face.
So the lateral surface area of a cube = sum of areas of 4 faces = 4a²
The Volume of a Cube
Volume
The volume of a three-dimensional object can be defined as the space required for it.
Similarly, Volume of a cube is defined as the space required for the cube or the Space occupied by the cube.
The volume of a cube can be calculated using the formula V = s3, where “s” represents the length of one side of the cube.
This formula shows that the volume of a cube is directly proportional to the cube of its side length.
The volume is calculated by multiplying the object’s length, breadth, and height. In the case of a cube shape, the length, width, and height are all of the same length. Let us refer to it as “s”.
Hence the volume of the cube is s ✕ s ✕ s = s³
Cubes in Our Daily Life
We encounter many cubes in our daily life such as Ice cubes, sugar cubes, dice and the building blocks used in games.
Cubes play a fundamental role in the study of geometry and serve as a basis for understanding three-dimensional space and concepts such as volume and surface area.
Also, Cubes have many applications in mathematics, engineering, architecture and art etc.
Study Tools
Audio, Visual & Digital Content
Cylinder is an important topic in Mathematics. It is a three-dimensional solid shape that has two parallel circular bases connected by a curved surface.
In this post, we will explore the properties of a cylinder and how to calculate its volume and surface area.
Let’s start with the basic definition of a right circular cylinder.
A cylinder is a solid shape that has two parallel circular bases of equal size and shape.
The curved surface that connects the two bases is called the lateral surface.
The axis of the cylinder is a line passing through the center of both bases.
Types Of Cylinders
(i). Solid Cylinder
(ii). Hollow Cylinder
Area Of A Solid Cylinder
Total Surface Area of Right Circular Cylinder = Curved Surface Area + Cicular Base Area + Circular Top Surface Area.
Since the Cicular Base Area And The Circular Top Surface Area of a cylinder are equal
Total Surface Area of Right Circular Cylinder = Curved Surface Area + 2(Cicular Top Surface Area)
Or
Total Surface Area of Right Circular Cylinder = Curved Surface Area + 2(Cicular Base Surface Area)
Therefore the formula to calculate the surface area of a cylinder is expressed as the following:
$$SA = 2\pi r h + 2\pi r^2$$
where SA is the surface area, r is the radius of the base, and h is the height of the cylinder.
Here, Curved Surface Area, $$CSA = 2\pi r h$$ and
Cicular Base Area = Top Surface Area = $$\pi r^2$$
Volume Of A Solid Cylinder
The formula to calculate the volume of a cylinder is given by:
$$V = \pi r^2 h$$
where V is the volume, r is the radius of the base, and h is the height of the cylinder.
Now let’s take an example to understand how to use these formulas. Suppose we have a cylinder with a radius of 4 cm and a height of 10 cm. To calculate its volume, we can use the formula:
$$V = \pi (4)^2 (10) = 160\pi$$
Therefore, the volume of the cylinder is 160π cubic cm.
To calculate its surface area, we can use the formula:
$$SA = 2\pi (4) (10) + 2\pi (4)^2 = 120\pi$$
Therefore, the surface area of the cylinder is 120π square cm.
In conclusion, understanding the properties of a cylinder and how to calculate its volume and surface area is important in CBSE Class 10 Mathematics. By using the formulas mentioned above, you can easily solve problems related to cylinders.
Hollow Cylinder
A hollow cylinder is a three-dimensional object with a circular base and a cylindrical shape. It is also known as a cylindrical shell. The cylinder has two circular faces and a curved surface. The thickness of the cylinder is uniform and it is hollow from inside.
Volume Of A Hollow Cylinder
The volume of a hollow cylinder can be calculated using the formula V = πh(R2-r2), where h is the height of the cylinder, R is the radius of the outer circle, and r is the radius of the inner circle.
Surface Area Of A Hollow Cylinder
The surface area of a hollow cylinder can be calculated using the formula A = 2πh(R+r), where h is the height of the cylinder, R is the radius of the outer circle, and r is the radius of the inner circle.
Hollow cylinders are used in various applications such as pipes, drums, and containers. They are also used in engineering structures such as bridges and towers.
In conclusion, a hollow cylinder is a useful shape in various fields and can be easily calculated using mathematical equations.
Cone
A cone is a three-dimensional geometric shape that has a circular base and a single vertex. It can be visualized as a pyramid with a circular base. In this note, we will cover the basic concepts and formulas related to cones.
Surface Area of a Cone
The surface area of a cone is the sum of the areas of its base and lateral surface. The formula to calculate the surface area of a cone is:
$$A = \pi r (r + l)$$
Where:
- ( A ) is the surface area of the cone
- $$\pi = 3.14159$$
- ( r ) is the radius of the base of the cone
- ( l ) is the slant height of the cone
Volume of a Cone
The volume of a cone is the amount of space enclosed by it. The formula to calculate the volume of a cone is:
$$V = \frac{1}{3} \pi r^2 h$$
Where:
- ( V ) is the volume of the cone
- ( \pi ) is a mathematical constant approximately equal to 3.14159
- ( r ) is the radius of the base of the cone
- ( h ) is the height of the cone
Example Equations
Here are a few example equations related to cones:
- Equation for calculating the slant height of a cone: $$l = \sqrt{r^2 + h^2}$$
- Equation for calculating the radius of a cone given its slant height and height: $$r = \sqrt{l^2 – h^2}$$
- Equation for calculating the height of a cone given its volume and radius: $$h = \frac{3V}{\pi r^2}$$
Sphere
Solid Sphere
Introduction – A solid sphere is a three-dimensional geometric figure in which all points inside the sphere are at the same distance from its center. – It is a type of 3D shape known as a “sphere” with a uniform density throughout.
Characteristics – The solid sphere has a well-defined volume, surface area, and mass. – It is completely filled with matter.
Volume of Solid Sphere The formula to calculate the volume (\(V_s\)) of a solid sphere is given by: \[ V_s = \frac{4}{3} \pi r^3 \] Where: \(V_s\) = Volume of the solid sphere, \(\pi\) (\(\pi\)) ≈ 3.14159, \(r\) = Radius of the sphere.
Surface Area of Solid Sphere The formula to calculate the surface area (\(A_s\)) of a solid sphere is given by: \[ A_s = 4 \pi r^2 \]
Where: \(A_s\) = Surface area of the solid sphere, \(\pi\) (\(\pi\)) ≈ 3.14159, \(r\) = Radius of the sphere
Mass of Solid Sphere The mass (\(m_s\)) of a solid sphere can be calculated using the formula: \[ m_s = \text{Density} \times V_s \] Where: \(m_s\) = Mass of the solid sphere, \(\text{Density}\) = Density of the material making up the sphere (usually in \(kg/m^3\)), \(V_s\) = Volume of the solid sphere (calculated using the previous formula)
Hollow Sphere
Introduction – A hollow sphere is also a three-dimensional geometric figure, but unlike a solid sphere, it has an empty space inside. – It consists of an outer shell or surface with a certain thickness and an inner empty region.
Characteristics – The hollow sphere has a well-defined outer radius (\(R\)), inner radius (\(r\)), volume, surface area, and mass. – It is partially filled with matter, mainly in the form of the outer shell.
Volume of Hollow Sphere The formula to calculate the volume (\(V_h\)) of a hollow sphere is given by: \[ V_h = \frac{4}{3} \pi (R^3 – r^3) \] Where: – \(V_h\) = Volume of the hollow sphere, \(\pi\) (\(\pi\)) ≈ 3.14159, \(R\) = Outer radius of the sphere, \(r\) = Inner radius of the sphere
Surface Area of Hollow Sphere The formula to calculate the surface area (\(A_h\)) of a hollow sphere is given by: \[ A_h = 4 \pi (R^2 – r^2) \] Where: \(A_h\) = Surface area of the hollow sphere, \(\pi\) (\(\pi\)) ≈ 3.14159, \(R\) = Outer radius of the sphere, \(r\) = Inner radius of the sphere
Mass of Hollow Sphere The mass (\(m_h\)) of a hollow sphere can be calculated using the formula: \[ m_h = \text{Density} \times V_h \] Where: \(m_h\) = Mass of the hollow sphere, \(\text{Density}\) = Density of the material making up the sphere (usually in \(kg/m^3\)), \(V_h\) = Volume of the hollow sphere (calculated using the previous formula)
Hindi Version Key Terms
Topic Terminology
Term
Important Tables
Table:
.
Symmetry | Assess
Assessment Tools
Assign | Assess | Analyse
Quick Quiz
Objective Assessment
Question Bank
List Of Questions With Key, Aswers & Solutions
Back To Learn
Re – Learn
Go Back To Learn Again
Symmetry | Assess
Assessment Tools
Assign | Assess | Analyse
Quick Quiz
Objective Assessment
Question Bank
List Of Questions With Key, Aswers & Solutions
Back To Learn
Re – Learn
Go Back To Learn Again
Symmetry | Study
Mind Map Overal Idea Content Speed Notes Quick Coverage Congruence: The relation of two objects being congruent is called congruence. (Scroll down till end of the page) Study Tools Audio, Visual & Digital Content Chapter – 7 Congruence of Triangles SSS Congruence of two triangles: Under a given correspondence, two triangles are congruent if the readmore
Mind Map
Overal Idea
Content
Speed Notes
Quick Coverage
Congruence: The relation of two objects being congruent is called congruence. (Scroll down till end of the page)
Study Tools
Audio, Visual & Digital Content
Chapter – 7
Congruence of Triangles

SSS Congruence of two triangles: Under a given correspondence, two triangles are congruent if the three sides of the one are equal to the three corresponding sides of the other.
SAS Congruenceof two triangles: Under a given correspondence, two triangles are
congruent if two sides and the angleincluded between them in one of the triangles are equal to the corresponding sides and the angle included between them of the other triangle.
ASA Congruence of two triangles: Under a given correspondence, two triangles are congruent if two anglesand the side included betweenthem in one of the triangles are equal to the corresponding angles and the side included between them of the other triangle.
RHS Congruence of two right-angled triangles: Under a given correspondence, two right-angled triangles are congruent if the hypotenuse and a leg of one of the triangles are equal to the hypotenuse and the corresponding leg of the other triangle.
There is no such thing as AAA Congruence of two triangles: Two triangles with equal corresponding angles need not be congruent. In such a correspondence, one of them can be an enlarged copy of the other.
(They would be congruent only if they are exact copies of one another).
Hindi Version Key Terms
Topic Terminology
Term
Important Tables
Table:
.


