Your cart is currently empty!
Tag: CBSE 7
Simple Equations | Study
Lines and Angles | Study
CBSE 7 | Mathematics – Study – Free
CBSE 7 | Mathematics – Study – Free
Class 7 | Mathematics | All In One
Simple Equations | Study
Pre-Requisires
Test & Enrich
English Version Simple Equations | Speed Notes
Notes For Quick Recap
An equation isa condition ona variable suchthat two expressions in the variable should have equalvalue.
Thevalue of thevariable for whichthe equation issatisfied is called the solution ofthe equation.
An equation remains the same if the LHSand the RHSare interchanged. (Scroll down to continue …)
Study Tools
Audio, Visual & Digital Content
In case ofthe balanced equation, if we add the same number to both thesides, or subtract the same number from both the sides,
or
multiply both sidesby the same number, or divide both sidesby the samenumber, the balance remains un disturbed,
i.e.,the value of the LHS remains equal to the value of the RHS The above property gives a systematic method of solving an equation.
We carry out a series of identical mathematical operations on the two sides of the equation in such a waythat on oneof the sides we get justthe variable. Thelast step isthe solution of the equation.
Transposing means moving to the other side.
Transposition of a number has the same effect as adding same number to (or subtracting the same number from) both sides of the equation.
Whenyou transpose a number fromone side ofthe equation tothe other side, you change itssign.
For example, transposing +3 fromthe LHS tothe RHS in equation x + 3 = 8 gives x = 8 – 3 (= 5).
We can carry out the transposition of an expression in thesame way as the transposition of a number.
We havelearnt how to construct simple algebraic expressions corresponding to practical situations.
Wealso learnt how,using the technique of doing thesame mathematical operation (for example adding the samenumber) on bothsides, we could build an equation starting fromits solution.
Further, we also learnt that we could relate a given equation tosome appropriate problem/puzzlefrom the equation. practical situation and build a practical word.
Hindi Version Dig Deep
Topic Level Resources
Sub – Topics
Select A Topic
Topic:
Chapters Index
Select Another Chapter
Assessments
Personalised Assessments
Lines and Angles | Study
Pre-Requisires
Test & Enrich
English Version Speed Notes
Notes For Quick Recap
We recall that
(i) A line-segment has two end points.
(ii) A ray has only one end point (its vertex);and
(III) A line has no end points on either side.
An angle is formed when two lines (or rays or line-segments) meet.
Study Tools
Audio, Visual & Digital Content
Important Formulas | Lines and Angles
When two lines l and m meet, we say they intersect; the meeting point is calledthe point of intersection.
When lines drawnon a sheet of paper do not meet, howeverfar produced, we call them to be parallel lines.
Point: A point name a location.
Line: A line is perfectlystraight and extends forever in both direction.
Line segment: A line segmentis the part of a line betweentwo points.
Ray: A ray is part of a line that starts at one point and extendsforever in one direction.
Intersecting lines: Two or more lines that have one and only one point in common.
The common point where all the intersecting lines meet is called the point of
intersection.
Transversal: A line intersects two or more lines that lie in the same plane in distinct points.
Parallel lines: Two lineson a plane that nevermeet. They distance apart.
Complementary Angles: Two angles whose measures add to 90^O Supplementary Angles: Two angles whose measures add to 180 ^o
Adjacent Angles: Two angles have a common vertex and a
common interiorpoints.
Linear pairs: A pair of adjacentangles whose non-common sides are oppositerays. Vertically Opposite Angles: Two angles formed by two intersecting lines have common arm.
Angles made by Transversal: When two lines are intersecting by a transversal, eight anglesare formed.
Transversal of Parallel Lines: If two parallel lines are intersected by a transversal, each pair of:
Corresponding angles are congruent. Alternateinterior angles are congruent. Alternateexterior angles are congruent.
If the transversal is perpendicular to the parallellines, all of the angles formed are congruent to 90 o angles.
1. A linewhich intersects two or more given lines at distinct points is called a transversal to the given lines.
2. Lines in a plane areparallel if theydo not intersect when produced indefinitely in either direction.
3. The distance between two intersecting lines is zero.
4. The distance between two parallel lines is thesame everywhere andis equal tothe perpendicular distance between them.
5. If two parallel lines are intersected by a transversal then (i) pairs ofalternate (interior orexterior) angles are equal. (ii) pairs of corresponding angles are equal. (iii) interior angles onthe same sideof the transversal are supplementary. 6. If twonon-parallel lines areintersected by transversal then none of (i), (ii) and (iii) hold true in 5. 7. If twolines are intersected by a transversal, thenthey are parallel ifany one of thefollowing is true: (i) The angles of a pair of corresponding angles are equal. (ii) The angles of a pairof alternate interior angles are equal. (iii) The angles of a pairof interior angles on the sameside of the transversal are supplementary.
Hindi Version Dig Deep
Topic Level Resources
Sub – Topics
Select A Topic
Topic:
Chapters Index
Select Another Chapter
Assessments
Personalised Assessments
CBSE 7 | Mathematics – Study – Free
Educational Tools | Full Course
Study Tools
Audio, Visual & Digital Content
Assessment Tools
Assign, Assess & Analyse
Connnect With Us
Enrich our growing community
[ultimatemember form_id=”26482″]
CBSE 7 | Mathematics – Study – Free
Educational Tools | Full Course
Study Tools
Audio, Visual & Digital Content
Assessment Tools
Assign, Assess & Analyse
Connnect With Us
Enrich our growing community
[ultimatemember form_id=”26482″]
Class 7 | Mathematics | All In One
FREE Educational Tools
Course Features
Personalised Education
Pre-Requisites
Test & Enrich
Study Tools
Audio Visual & Digital Content
Testing Tools
Assign, Assess & Analyse
Interactive Tools
Ask, Answer & Discuss
Speed Notes
Notes For Quick Revision
E-book
Chapterwise Textbook
Assignment Tools
Testing Tools To Assign, Assess & Analyse
NCERT Solutions
Solved Exercises
NCERT Exemplar
HOTS Questions & Answers
Hindi Version
Watch In Hindi
Assessments
Assign, Assess & Analyse