Your cart is currently empty!
Tag: Introduction to Trigonometry y
Coordinate Geometry | Study
Introduction to Trigonometry | Study
Coordinate Geometry | Study
Pre-Requisires
Test & Enrich
English Version Speed Notes
Notes For Quick Recap
Cartesian System
A plane formed by two number lines, one horizontal
and the other vertical, such that they intersect each
other at their zeroes, and then they form a Cartesian
Plane.
Scroll Down To Continue …
Study Tools
Audio, Visual & Digital Content
Coordinate Axes:
The position of a point in a plane is fixed by selecting the axes of reference which are formed by two number lines intersecting each other at right angles, so that their zeroes coincide.
The horizontal number line is called x-axis and vertical number line is called y axis.
A point that lies on X Axis is (x,0)
A point that lies on Y Axis is (0,y)
Equation of Y Axis is x = 0
Equation of X Axis is y = 0
Equation of a lne parallel to Y Axis is x = a
Equation of a lne parallel to X Axis is y = a
Equation of a lne perpendicular to X Axis is X = a
Equation of a lne perpendicular to X Axis is X = a
The point of intersection of the two lines is called origin.
is the x-axis and Y1OY is the y-axis. These coordinate axes are also called rectangular axes as they are perpendicular to each other.
Rectangular coordinates are ordered pairs in which the first element is called the abscissa and the second element is called the ordinate.
● In the first quadrant, x is + ve and y is + ve
● In the second quadrant, x is – ve and y is + ve
● In the third quadrant, x is – ve and y is – ve
● In the fourth quadrant, x is + ve and y is -ve.
Distance Formula:
Example:
Example:
Collinearity of three points:
Three points P, Q and R are said to be collinear, if they lie in the same straight line.
i.e., PR = PQ + QR
i.e., PQ = PR + RQ
i.e., QR = QP + PR
If three points are not collinear, they always form a triangle.
Special Polygons:
(i) In Case of Triangle
(a) a right-angled triangle, if sum of squares of any two sides is equal to square of third side.
(b) an equilateral triangle, if all the three sides are equal.
(c) an isosceles triangle, if any two sides are equal.
(ii) In Case of Quadrilateral
(a) parallelogram, if opposite sides are equal and diagonals are not equal.
(b) rectangle, if opposite sides are equal and diagonals are equal.
(c) square, if all the four sides are equal and diagonals are equal.
(d) rhombus, if all the four sides are equal and diagonals are not equal.
Section Formula (Internal division only)
Midpoint Formula:
Point Dividing Two points in K : 1 Ratio:
Note:
If k is positive, the point divides the given points internally.
If k is Negative, the point divides the given points externally
Coordinates of the centroid of a triangle:
Points of Trisection:
If a line segment is divided into three equal parts by two points, the points are said to be the points of trisection.
In the given figure, the points R and S divide the line segment PQ into three equal parts i.e., PR=RS=SQ. The points R and S are said to be points of trisection.
Area of a Triangle:
The area of the triangle formed by the points
is calculated by the following expression.
Area of ∆PQR =
Area of Quadrilateral:
Area of a quadrilateral can be found by splitting up the quadrilateral into two triangles and sum up their areas.
Thus, area of quadrilateral PQRS = area of ∆PQR+ area of ∆PRS
Condition for collinearity of three points :
Three given points will be collinear, if the area of the triangle formed by these points is zero.
Rule to prove that three given points are collinear:
Step 1. Find the area of the triangle formed by the given points.
Step 2. Show that the area of the triangle formed by the given points is zero.
* The coordinates of the origin are O(0,0)
* The coordinates of any point on x-axis are (x, 0)
i.e., y=0 or ordinate is zero.
* The coordinates of any point on y – axis are (0, y) i.e., x=0 or abscissa is zero.
Hindi Version Dig Deep
Topic Level Resources
Sub – Topics
Select A Topic
Topic:
Chapters Index
Select Another Chapter
- Cuboid And Cube
- Probability | Study
- Statistics | Study
- Surface Areas and Volumes | Study
- Areas Related to Circles | Study
- Circles | Study
- Some Applications Of Trigonometry| Study
- Introduction To Trigonometry | Study
- Coordinate Geometry | Study
- Triangles | Study
- Arithmetic Progressions| Study
- Quadratic Equations | Study
- Pair of Linear Equations in Two Variables | Study
- Polynomials | Study
- Real Numbers | Study
Assessments
Personalised Assessments
Introduction to Trigonometry | Study
Pre-Requisires
Test & Enrich
English Version Introduction To Trigonometry | Speed Notes
Notes For Quick Recap
An angle is positive if its rotation is in the anticlockwise and negative if its rotation is in the clockwise direction.
An angle is positive if its rotation is in the anticlockwise and negative if its rotation is in the clockwise direction.
(Scroll down to continue …)
Study Tools
Audio, Visual & Digital Content
Trigonometric Ratios
If one of the trigonometric ratios of an acute angle is known, the remaining trigonometric ration of the angle can be determined.
Two angles are said to be complementary, if their sum is 900 and each one of them is called the complement of the other.
sin (900 – θ) = Cos θ
Cos (900– θ)= Sin θ
tan (900– θ) = Cot θ
Cot(900– θ) = tan θ
sec (900– θ)= cosec θ
cosec (900– θ) = sec θ
Trigonometric Identities
An equation with trigonometric ratios of an angle θ, which is true for all values of ‘ θ ‘, for which the given trigonometric ratios are defined, is called an identity.
The three fundamental trigonometric identities are
- sin2 θ +cos2 θ = 1
⇒ sin2 θ =1-cos2 θ
⇒ sin2 θ =(1-cos θ)(1+cos θ)
⇒ (1- cos θ) = (sin2 θ) /(1+ cos θ)
⇒ (1+ cos θ) = (sin2 θ) /(1- cos θ)
⇒ cos2 θ + sin2 θ = 1
cos2 θ =1- sin2 θ
⇒ cos2 θ =(1- sin θ)(1+ sin θ)
⇒ (1+ sin θ) = (cos2 θ) /(1- sin θ)
⇒ (1- sin θ) = cos2 θ /(1+sin θ)
(b) sec2 θ = 1 + tan2 θ
⇒ sec2 θ – tan2 θ =1
⇒ (sec θ – tan θ)(sec θ + tan θ) = 1
⇒ (sec θ – tan θ) = 1/ (sec θ + tan θ)
⇒ (sec θ + tan θ) = 1/ (sec θ – tan θ)
⇒ sec2 θ – 1 = tan2 θ
⇒ (sec θ – 1)( sec θ – 1) = tan2 θ
(c) cosec2 θ = 1+cot2θ
⇒ cosec2 θ – cot2 θ = 1
⇒ (cosec θ – cot θ)(cosec θ + cot θ)=1
(cosec θ+ cot θ) =1cosec θ – cot θ
(cosec θ- cot θ) = 1cosec θ + cot θ
⇒ Cosec2 θ – 1 = cot2 θ
⇒ (Cosec θ – 1)( Cosec θ – 1) = Cot2 θ
Supportive Formulae:
(a+b)2=+a2+b2+2ab
(a-b)2 = a2+b2-2ab
(a+b)2+(a-b)2= 2 (a2+b2)
(a+b)2– (a-b)2= 4ab
(a-b)2– (a+b)2= – 4ab
(a+b)2 = (a-b)2+ 4ab
(a-b)2 = (a+b)2– 4ab
(a2-b2)=(a+b)(a-b)
a+b=(a2-b2) /(a-b)
a-b=(a2-b2) /(a-b)
(a+b)2= (a-b)2+ 4ab
Hindi Version Dig Deep
Topic Level Resources
Sub – Topics
Select A Topic
Topic:
Chapters Index
Select Another Chapter
- Real Numbers | Study
- Polynomials | Study
- Pair of Linear Equations in Two Variables | Study
- Quadratic Equations | Study
- Arithmetic Progressions| Study
- Triangles | Study
- Coordinate Geometry | Study
- Introduction To Trigonometry | Study
- Some Applications Of Trigonometry| Study
- Circles | Study
- Areas Related to Circles | Study
- Surface Areas and Volumes | Study
- Statistics | Study
- Probability | Study
- Cuboid And Cube
Assessments
Personalised Assessments