Your cart is currently empty!
Tag: Introduction to Trigonometry y
Introduction to Trigonometry | Study
Introduction to Trigonometry | Study
Pre-Requisires
Test & Enrich
Introduction To Trigonometry | Speed Notes
Notes For Quick Recap
An angle is positive if its rotation is in the anticlockwise and negative if its rotation is in the clockwise direction.
An angle is positive if its rotation is in the anticlockwise and negative if its rotation is in the clockwise direction.
(Scroll down to continue …)
Study Tools
Audio, Visual & Digital Content
Trigonometric Ratios
If one of the trigonometric ratios of an acute angle is known, the remaining trigonometric ration of the angle can be determined.
Two angles are said to be complementary, if their sum is 900 and each one of them is called the complement of the other.
sin (900 – θ) = Cos θ
Cos (900– θ)= Sin θ
tan (900– θ) = Cot θ
Cot(900– θ) = tan θ
sec (900– θ)= cosec θ
cosec (900– θ) = sec θ
Trigonometric Identities
An equation with trigonometric ratios of an angle θ, which is true for all values of ‘ θ ‘, for which the given trigonometric ratios are defined, is called an identity.
The three fundamental trigonometric identities are
- sin2 θ +cos2 θ = 1
⇒ sin2 θ =1-cos2 θ
⇒ sin2 θ =(1-cos θ)(1+cos θ)
⇒ (1- cos θ) = (sin2 θ) /(1+ cos θ)
⇒ (1+ cos θ) = (sin2 θ) /(1- cos θ)
⇒ cos2 θ + sin2 θ = 1
cos2 θ =1- sin2 θ
⇒ cos2 θ =(1- sin θ)(1+ sin θ)
⇒ (1+ sin θ) = (cos2 θ) /(1- sin θ)
⇒ (1- sin θ) = cos2 θ /(1+sin θ)
(b) sec2 θ = 1 + tan2 θ
⇒ sec2 θ – tan2 θ =1
⇒ (sec θ – tan θ)(sec θ + tan θ) = 1
⇒ (sec θ – tan θ) = 1/ (sec θ + tan θ)
⇒ (sec θ + tan θ) = 1/ (sec θ – tan θ)
⇒ sec2 θ – 1 = tan2 θ
⇒ (sec θ – 1)( sec θ – 1) = tan2 θ
(c) cosec2 θ = 1+cot2θ
⇒ cosec2 θ – cot2 θ = 1
⇒ (cosec θ – cot θ)(cosec θ + cot θ)=1
(cosec θ+ cot θ) =1cosec θ – cot θ
(cosec θ- cot θ) = 1cosec θ + cot θ
⇒ Cosec2 θ – 1 = cot2 θ
⇒ (Cosec θ – 1)( Cosec θ – 1) = Cot2 θ
Supportive Formulae:
(a+b)2=+a2+b2+2ab
(a-b)2 = a2+b2-2ab
(a+b)2+(a-b)2= 2 (a2+b2)
(a+b)2– (a-b)2= 4ab
(a-b)2– (a+b)2= – 4ab
(a+b)2 = (a-b)2+ 4ab
(a-b)2 = (a+b)2– 4ab
(a2-b2)=(a+b)(a-b)
a+b=(a2-b2) /(a-b)
a-b=(a2-b2) /(a-b)
(a+b)2= (a-b)2+ 4ab
Dig Deep
Topic Level Resources
Sub – Topics
Select A Topic
Topic:
Chapters Index
Select Another Chapter
Assessments
Personalised Assessments