Category: Uncategorized
5*40
10+20
150/3
\(x^2\)
\(x^2\)
\(x^2\)
\(x^2\)
Find the roots of \\(x^2 – 5x + 6 = 0\\)
If one root of \\(2x^2 + 3x – 5 = 0\\) is \\(x = 1\\), find the other root using the relation \\(\alpha\beta = \\frac{c}{a}\\)
Find the roots of \\(x^2 – 5x + 6 = 0\\)
If one root of \\(2x^2 + 3x – 5 = 0\\) is \\(x = 1\\), find the other root using the relation \\(\alpha\beta = \\frac{c}{a}\\)
Find the roots of \\(x^2 – 5x + 6 = 0\\)
If one root of \\(2x^2 + 3x – 5 = 0\\) is \\(x = 1\\), find the other root using the relation \\(\alpha\beta = \\frac{c}{a}\\)
Find the roots of \\(x^2 – 5x + 6 = 0\\)
If one root of \\(2x^2 + 3x – 5 = 0\\) is \\(x = 1\\), find the other root using the relation \\(\alpha\beta = \\frac{c}{a}\\)
Find the roots of \\(x^2 – 5x + 6 = 0\\)
If one root of \\(2x^2 + 3x – 5 = 0\\) is \\(x = 1\\), find the other root using the relation \\(\alpha\beta = \\frac{c}{a}\\)
Find the roots of \\(x^2 – 5x + 6 = 0\\)
If one root of \\(2x^2 + 3x – 5 = 0\\) is \\(x = 1\\), find the other root using the relation \\(\alpha\beta = \\frac{c}{a}\\)
Find the roots of \\(x^2 – 5x + 6 = 0\\)
(A) \\(x = 2, 3\\)
(B) \\(x = -2, -3\\)
(C) \\(x = 1, 6\\)
If one root of \\(2x^2 + 3x – 5 = 0\\) is \\(x = 1\\), find the other root using the relation \\(\alpha\beta = \\frac{c}{a}\\)
(A) \\(x = -\frac{5}{2}\\)
(B) \\(x = 2\\)
(C) \\(x = -2\\)
Find the roots of \(x^2 – 5x + 6 = 0\)
Options:
A. \(x = 2, 3\)
B. \(x = -2, -3\)
C. \(x = 1, 6\)
D. \(x = -1, -6\)
The roots of \(x^2 + 4x + 4 = 0\) are
Options:
A. Equal and real
B. Distinct and real
C. Imaginary
D. None of these
For what value of \(k\) does \(x^2 + kx + 9 = 0\) have equal roots?
Options:
A. \(k = 6\)
B. \(k = -6\)
C. \(k = 3\)
D. \(k = -3\)
Solve \( x^2 – 4x + 3 = 0 \)
A. \( x = 1, 3 \)
B. \( x = 2, 3 \)
C. \( x = -1, -3 \)
D. \( x = 3, 4 \)
If \( x^2 + 6x + 9 = 0 \), then the roots are:
A. \( x = 3, 3 \)
B. \( x = -3, -3 \)
C. \( x = -3, 3 \)
D. \( x = 9, -9 \)
The standard form of a quadratic equation is:
A. \( ax^3 + bx + c = 0 \)
B. \( ax^2 + bx + c = 0 \)
C. \( ax + b = 0 \)
D. \( a^2x + b = 0 \)
Solve \( x^2 – 5x + 6 = 0 \) by splitting the middle term.
A. x = 1, 6
B. x = 2, 3
C. x = 3, 4
D. x = 1, 2
The standard form of a quadratic equation is:
A. \( ax^3 + bx + c = 0 \)
B. \( ax^2 + bx + c = 0 \)
C. \( ax + b = 0 \)
D. \( a^2x + b = 0 \)
Identify coefficients a, b, c in \( 3x^2 – 5x + 2 = 0 \)
A. a=3, b=-5, c=2
B. a=2, b=-5, c=3
C. a=-3, b=5, c=2
D. a=3, b=5, c=-2
Solve \( x^2 – 7x + 10 = 0 \) by factorization.
A. x=2,5
B. x=3,4
C. x=1,10
D. x=5,7
Find roots of \( x^2 – 4x – 5 = 0 \) using quadratic formula.
A. x=5, -1
B. x=4, -5
C. x=5, 1
D. x=2, -5
Find nature of roots of \( x^2 + 4x + 5 = 0 \).
A. Real & Equal
B. Real & Distinct
C. Imaginary
D. Zero
If product of two consecutive integers is 132, find the numbers.
A. 10, 11
B. 11, 12
C. 12, 13
D. 13, 14
Form the quadratic equation whose roots are 2 and 3.
A. \( x^2 – 5x + 6 = 0 \)
B. \( x^2 – 6x + 5 = 0 \)
C. \( x^2 + 5x + 6 = 0 \)
D. \( x^2 – 2x – 3 = 0 \)
If roots are 2 and 3, find their sum and product.
A. Sum=5, Product=6
B. Sum=6, Product=5
C. Sum=1, Product=6
D. Sum=5, Product=3
For equation \( 2x^2 + 5x + 3 = 0 \, verify ( frac{-b}{a} = text{sum of roots} ).
A. True
B. False
C. Partially True
D. None
If one root of \( kx^2 + 5x + 1 = 0 \) is ( -1 ), find k.
A. 2
B. 3
C. 4
D. 5
The standard form of a quadratic equation is:
A. \( ax^3 + bx + c = 0 \)
B. \( ax^2 + bx + c = 0 \)
C. \( ax + b = 0 \)
D. \( a^2x + b = 0 \)
Identify coefficients a, b, c in \( 3x^2 – 5x + 2 = 0 \)
A. a=3, b=-5, c=2
B. a=2, b=-5, c=3
C. a=-3, b=5, c=2
D. a=3, b=5, c=-2
Solve \( x^2 – 7x + 10 = 0 \) by factorization.
A. x=2,5
B. x=3,4
C. x=1,10
D. x=5,7
Find roots of \( x^2 – 4x – 5 = 0 \) using quadratic formula.
A. x=5, -1
B. x=4, -5
C. x=5, 1
D. x=2, -5
Find nature of roots of \( x^2 + 4x + 5 = 0 \).
A. Real & Equal
B. Real & Distinct
C. Imaginary
D. Zero
If product of two consecutive integers is 132, find the numbers.
A. 10, 11
B. 11, 12
C. 12, 13
D. 13, 14
Form the quadratic equation whose roots are 2 and 3.
A. \( x^2 – 5x + 6 = 0 \)
B. \( x^2 – 6x + 5 = 0 \)
C. \( x^2 + 5x + 6 = 0 \)
D. \( x^2 – 2x – 3 = 0 \)
If roots are 2 and 3, find their sum and product.
A. Sum=5, Product=6
B. Sum=6, Product=5
C. Sum=1, Product=6
D. Sum=5, Product=3
For equation \( 2x^2 + 5x + 3 = 0 \, verify ( frac{-b}{a} = text{sum of roots} ).
A. True
B. False
C. Partially True
D. None
If one root of \( kx^2 + 5x + 1 = 0 \) is ( -1 ), find k.
A. 2
B. 3
C. 4
D. 5
| Balance the equation: \( H_2 + O_2 \rightarrow H_2O \) A. \( H_2 + O_2 \rightarrow H_2O \) B. \( 2H_2 + O_2 \rightarrow 2H_2O \) C. \( H_2 + 2O_2 \rightarrow H_2O \) D. \( 2H_2 + 2O_2 \rightarrow 2H_2O \) |
There are no questions attached yet.



Leave a Reply
You must be logged in to post a comment.