Coordinate Geometry โ€“ Class 9 Mathematics

Click For Contents

Share/Assign

Chapter: Coordinate Geometry โ€” Class 9 Maths (NCERT)


๐Ÿ”น 1. Introduction

Coordinate Geometry (also called Cartesian Geometry) is the branch of mathematics in which the position of a point, line, or shape is described using ordered pairs (x, y) on a plane.

It forms a bridge between Algebra and Geometry.


๐Ÿ”น 2. Cartesian System

(a) Coordinate Axes

  • Two perpendicular lines intersecting at a point O (origin) form the coordinate axes.

  • The horizontal line is called the x-axis.

  • The vertical line is called the y-axis.

(b) Quadrants

  • The plane is divided into four quadrants by the axes.

QuadrantSign of xSign of y
I Quadrant++++
II Quadrantโˆ’++
III Quadrantโˆ’โˆ’
IV Quadrant++โˆ’

Diagram: Cartesian plane showing the four quadrants and origin.


๐Ÿ”น 3. Coordinates of a Point

Each point on the plane is represented by an ordered pair (x,y)(x, y):

  • xx: the abscissa (distance along the x-axis)

  • yy: the ordinate (distance along the y-axis)

Example:
Point A(3,2)A(3, 2) means x=3x = 3, y=2y = 2.


๐Ÿ”น 4. Signs of Coordinates

RegionSign of xSign of yExample
I Quadrant++A(2,3)A(2, 3)
II Quadrantโ€“+B(โˆ’2,4)B(-2, 4)
III Quadrantโ€“โ€“C(โˆ’3,โˆ’5)C(-3, -5)
IV Quadrant+โ€“D(4,โˆ’2)D(4, -2)

๐Ÿ”น 5. Coordinates on the Axes

  • On x-axis: y=0y = 0โ†’ Points like (2,0)(2, 0)

  • On y-axis: x=0x = 0โ†’ Points like (0,โˆ’3)(0, -3)

  • At origin: (0,0)(0, 0)


๐Ÿ”น 6. Distance Formula

To find the distance between two points
A(x1,y1)A(x_1, y_1) and B(x2,y2)B(x_2, y_2):

AB=(x2โˆ’x1)2+(y2โˆ’y1)2โ€‹

Example:

Find the distance between P(2,3)P(2, 3) and Q(5,7)Q(5, 7).

AB=(5โˆ’2)2+(7โˆ’3)2=9+16=25=5AB = \sqrt{(5 – 2)^2 + (7 – 3)^2} = \sqrt{9 + 16} = \sqrt{25} = 5


๐Ÿ”น 7. Section Formula

If a point P(x,y)P(x, y) divides the line joining A(x1,y1)A(x_1, y_1) and B(x2,y2)B(x_2, y_2) in the ratio m:nm : n, then:

x=mx2+nx1m+n,y=my2+ny1m+nx = \frac{m x_2 + n x_1}{m + n}, \quad y = \frac{m y_2 + n y_1}{m + n}

Special case:
When m=nm = n, PP is the mid-point of ABAB.


๐Ÿ”น 8. Mid-Point Formula

Ifย P(x,y)ย isย theย mid-pointย ofย A(x1,y1)ย andย B(x2,y2),\text{If } P(x, y) \text{ is the mid-point of } A(x_1, y_1) \text{ and } B(x_2, y_2),

then

x=x1+x22,y=y1+y22โ€‹Example:
Find the midpoint of A(2,3)A(2, 3) and B(4,7)B(4, 7).

x=2+42=3,y=3+72=5x = \frac{2 + 4}{2} = 3, \quad y = \frac{3 + 7}{2} = 5โˆด Mid-point = (3,5)(3, 5)


๐Ÿ”น 9. Area of a Triangle (using coordinates)

For vertices A(x1,y1)A(x_1, y_1), B(x2,y2)B(x_2, y_2), C(x3,y3)C(x_3, y_3):

Area=12โˆฃx1(y2โˆ’y3)+x2(y3โˆ’y1)+x3(y1โˆ’y2)โˆฃ

Example: Find the area of the triangle formed by A(2,3)A(2, 3), B(4,5)B(4, 5), C(6,3)C(6, 3).

Area=12โˆฃ2(5โˆ’3)+4(3โˆ’3)+6(3โˆ’5)โˆฃ=12โˆฃ4+0โˆ’12โˆฃ=12ร—8=4

Area = 4 square units.


๐Ÿ”น 10. Collinearity of Points

Three points AA, BB, and CC are collinear if:

Areaย ofย โ–ณABC=0\text{Area of } \triangle ABC = 0

or equivalently, the slopes between each pair are equal.


๐Ÿ”น 11. Important Observations

  • Distance formula derives from the Pythagoras theorem.

  • Coordinates help in proving geometrical properties algebraically.

  • Used widely in graphs, geometry, and physics (motion, forces).


โœ๏ธ Key Formulas at a Glance

ConceptFormula
Distance(x2โˆ’x1)2+(y2โˆ’y1)2\sqrt{(x_2 – x_1)^2 + (y_2 – y_1)^2}
Mid-point(x1+x22,y1+y22)\left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)
Section formula(mx2+nx1m+n,my2+ny1m+n)\left( \frac{m x_2 + n x_1}{m + n}, \frac{m y_2 + n y_1}{m + n} \right)
Area of triangle

ยฝ (Base x Height)

ย 


โœ… Summary

  • Coordinate geometry combines algebra with geometry.

  • Helps locate points, find distances, midpoints, areas.

  • Fundamental for higher topics like graphs, slopes, equations of lines, and geometry proofs.

ANSWER KEY โ€” Coordinate Geometry (Class 9 Mathematics)

All solutions are written in full-sentence, CBSE-style format and show step-by-step calculations.


Q1. What do you understand by the terms abscissa, ordinate, and origin in the Cartesian coordinate system?

Answer:
The abscissa of a point is the x-coordinate which gives the horizontal distance of the point from the y-axis. The ordinate of a point is the y-coordinate which gives the vertical distance of the point from the x-axis. The origin is the point where the x-axis and y-axis meet; its coordinates are (0,0)(0,0).


Q2. Write the coordinates of:

(a) A point lying on the x-axis at a distance of 4 units from the origin on the right-hand side.
(b) A point lying on the y-axis at a distance of 3 units above the origin.

Answer:
(a) A point on the x-axis 4 units to the right of the origin has x = +4 and y = 0, so its coordinates are (4,0)(4,0).
(b) A point on the y-axis 3 units above the origin has x = 0 and y = +3, so its coordinates are (0,3)(0,3).


Q3. Identify the quadrant in which each of the following points lies and state the sign of their abscissa and ordinate: (a) (5,7)(5,7) (b) (โˆ’3,6)(โˆ’3,6) (c) (โˆ’4,โˆ’2)(โˆ’4,โˆ’2) (d) (6,โˆ’3)(6,โˆ’3).

Answer:
(a) Point (5,7)(5,7) lies in the first quadrant because x>0x>0 and y>0y>0. The abscissa is positive and the ordinate is positive.
(b) Point (โˆ’3,6)(โˆ’3,6) lies in the second quadrant because x<0x<0 and y>0y>0. The abscissa is negative and the ordinate is positive.
(c) Point (โˆ’4,โˆ’2)(โˆ’4,โˆ’2) lies in the third quadrant because x<0x<0 and y<0y<0. The abscissa is negative and the ordinate is negative.
(d) Point (6,โˆ’3)(6,โˆ’3) lies in the fourth quadrant because x>0x>0 and y<0y<0. The abscissa is positive and the ordinate is negative.


Q4. Fill in the blanks:

(a) The coordinates of the origin are __________.
(b) If a point lies on the y-axis, its x-coordinate is __________.
(c) If a point lies on the x-axis, its y-coordinate is __________.

Answer:
(a) The coordinates of the origin are (0,0)(0,0).
(b) If a point lies on the y-axis, its x-coordinate is 00.
(c) If a point lies on the x-axis, its y-coordinate is 00.


Q5. Find the distance between the two points A(2,3)A(2,3) and B(5,7)B(5,7) using the distance formula. Show all steps.

Solution and Answer:
The distance formula for points A(x1,y1)A(x_1,y_1) and B(x2,y2)B(x_2,y_2) is

AB=(x2โˆ’x1)2+(y2โˆ’y1)2.AB=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}.

Here x1=2,โ€…โ€Šy1=3,โ€…โ€Šx2=5,โ€…โ€Šy2=7x_1=2,\; y_1=3,\; x_2=5,\; y_2=7. Compute step by step:

  • x2โˆ’x1=5โˆ’2=3x_2-x_1 = 5-2 = 3.

  • (x2โˆ’x1)2=32=9(x_2-x_1)^2 = 3^2 = 9.

  • y2โˆ’y1=7โˆ’3=4y_2-y_1 = 7-3 = 4.

  • (y2โˆ’y1)2=42=16(y_2-y_1)^2 = 4^2 = 16.

  • Sum =9+16=25= 9 + 16 = 25.

  • AB=25=5AB = \sqrt{25} = 5.

Therefore, the distance between AA and BB is 55 units.


Q6. Find the coordinates of the midpoint of the line segment joining the points P(โˆ’2,4)P(โˆ’2,4) and Q(6,โˆ’8)Q(6,โˆ’8). Also explain the formula used.

Solution and Answer:
The midpoint MM of the line segment joining P(x1,y1)P(x_1,y_1) and Q(x2,y2)Q(x_2,y_2) is given by

Mโ€‰โฃ(x1+x22,โ€‰y1+y22).M\!\left(\frac{x_1+x_2}{2},\,\frac{y_1+y_2}{2}\right).

Here x1=โˆ’2,โ€…โ€Šy1=4,โ€…โ€Šx2=6,โ€…โ€Šy2=โˆ’8x_1=-2,\; y_1=4,\; x_2=6,\; y_2=-8. Compute step by step:

  • x1+x22=โˆ’2+62=42=2.\dfrac{x_1+x_2}{2} = \dfrac{-2 + 6}{2} = \dfrac{4}{2} = 2.

  • y1+y22=4+(โˆ’8)2=โˆ’42=โˆ’2.\dfrac{y_1+y_2}{2} = \dfrac{4 + (-8)}{2} = \dfrac{-4}{2} = -2.

Thus the midpoint is M(2,โˆ’2)M(2,-2).


Q7. The point R(x,y)R(x,y) divides the line segment joining the points A(2,3)A(2,3) and B(8,5)B(8,5) in the ratio 2:12:1. Find the coordinates of the point RR using the section formula.

Solution and Answer:
Using the internal section formula: if a point divides ABAB in the ratio m:nm:n (where the ratio corresponds to AP:PB=m:nAP:PB = m:n), then

x=mx2+nx1m+n,y=my2+ny1m+n.x=\frac{m x_2 + n x_1}{m+n},\qquad y=\frac{m y_2 + n y_1}{m+n}.

Here x1=2,โ€…โ€Šy1=3,โ€…โ€Šx2=8,โ€…โ€Šy2=5,โ€…โ€Šm=2,โ€…โ€Šn=1x_1=2,\; y_1=3,\; x_2=8,\; y_2=5,\; m=2,\; n=1. Compute each coordinate:

  • x=2โ‹…8+1โ‹…22+1=16+23=183=6.x=\dfrac{2\cdot 8 + 1\cdot 2}{2+1}=\dfrac{16+2}{3}=\dfrac{18}{3}=6.

  • y=2โ‹…5+1โ‹…32+1=10+33=133.y=\dfrac{2\cdot 5 + 1\cdot 3}{2+1}=\dfrac{10+3}{3}=\dfrac{13}{3}.

Therefore, RR has coordinates Rโ€‰โฃ(6,โ€…โ€Š133)\displaystyle R\!\left(6,\;\frac{13}{3}\right).


Q8. Verify whether the points P(1,2)P(1,2), Q(4,6)Q(4,6), and R(7,10)R(7,10) are collinear by using the concept of slope.

Solution and Answer:
Three points are collinear if the slope of PQPQ equals the slope of QRQR.

Slope mPQ=yQโˆ’yPxQโˆ’xP=6โˆ’24โˆ’1=43.m_{PQ}=\dfrac{y_Q-y_P}{x_Q-x_P}=\dfrac{6-2}{4-1}=\dfrac{4}{3}.
Slope mQR=yRโˆ’yQxRโˆ’xQ=10โˆ’67โˆ’4=43.m_{QR}=\dfrac{y_R-y_Q}{x_R-x_Q}=\dfrac{10-6}{7-4}=\dfrac{4}{3}.

Since mPQ=mQR=43m_{PQ}=m_{QR}=\dfrac{4}{3}, the three given points are collinear.


Q9. Find the area of the triangle whose vertices are A(2,3)A(2,3), B(4,5)B(4,5), and C(6,3)C(6,3) using the coordinate-geometry area formula.

Solution and Answer:
The area of โ–ณABC\triangle ABC is

Area=12โˆฃx1(y2โˆ’y3)+x2(y3โˆ’y1)+x3(y1โˆ’y2)โˆฃ.\text{Area}=\frac{1}{2}\left|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)\right|.

Substitute x1=2,y1=3;โ€…โ€Šx2=4,y2=5;โ€…โ€Šx3=6,y3=3x_1=2,y_1=3;\; x_2=4,y_2=5;\; x_3=6,y_3=3:

Compute each term:

  • x1(y2โˆ’y3)=2(5โˆ’3)=2ร—2=4.x_1(y_2-y_3)=2(5-3)=2\times2=4.

  • x2(y3โˆ’y1)=4(3โˆ’3)=4ร—0=0.x_2(y_3-y_1)=4(3-3)=4\times0=0.

  • x3(y1โˆ’y2)=6(3โˆ’5)=6ร—(โˆ’2)=โˆ’12.x_3(y_1-y_2)=6(3-5)=6\times(-2)=-12.

Sum =4+0โˆ’12=โˆ’8=4 + 0 -12 = -8. Absolute value โˆฃโˆ’8โˆฃ=8|-8| = 8. Then area =12ร—8=4.=\dfrac{1}{2}\times 8 = 4.

Therefore, the area of the triangle is 44 square units.


Q10. The points A(2,3)A(2,3), B(4,k)B(4,k), and C(6,โˆ’3)C(6,-3) are collinear. Find the value of kk.

Solution and Answer:
If three points are collinear, area of the triangle formed by them is zero. Using the area formula:

12โˆฃx1(y2โˆ’y3)+x2(y3โˆ’y1)+x3(y1โˆ’y2)โˆฃ=0.\frac{1}{2}\left|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)\right|=0.

Substitute x1=2,y1=3;โ€…โ€Šx2=4,y2=k;โ€…โ€Šx3=6,y3=โˆ’3x_1=2,y_1=3;\; x_2=4,y_2=k;\; x_3=6,y_3=-3:

Compute inside absolute value:

  • x1(y2โˆ’y3)=2(kโˆ’(โˆ’3))=2(k+3)=2k+6.x_1(y_2-y_3)=2\big(k – (-3)\big)=2(k+3)=2k+6.

  • x2(y3โˆ’y1)=4(โˆ’3โˆ’3)=4(โˆ’6)=โˆ’24.x_2(y_3-y_1)=4\big(-3-3\big)=4(-6)=-24.

  • x3(y1โˆ’y2)=6(3โˆ’k)=18โˆ’6k.x_3(y_1-y_2)=6\big(3-k\big)=18-6k.

Sum =(2k+6)+(โˆ’24)+(18โˆ’6k)=2k+6โˆ’24+18โˆ’6k=(2kโˆ’6k)+(6โˆ’24+18)=โˆ’4k+0=โˆ’4k.=(2k+6)+(-24)+(18-6k)=2k+6-24+18-6k=(2k-6k)+(6-24+18)=-4k+0=-4k.

So 12โˆฃโˆ’4kโˆฃ=0โ‡’โˆฃโˆ’4kโˆฃ=0โ‡’โˆ’4k=0โ‡’k=0.\tfrac12\lvert -4k\rvert=0\Rightarrow |-4k|=0\Rightarrow -4k=0\Rightarrow k=0.

Therefore, k=0k=0.


Q11. The vertices of a quadrilateral are A(2,3)A(2,3), B(6,7)B(6,7), C(10,3)C(10,3), and D(6,โˆ’1)D(6,-1). Show that the given quadrilateral is a square by using the distance formula and verifying that adjacent sides are perpendicular.

Solution and Answer:
We will compute the lengths of all four sides and show that adjacent sides are equal in length and one pair of adjacent sides is perpendicular.

  1. Compute side lengths using the distance formula.

  • AB=(6โˆ’2)2+(7โˆ’3)2=42+42=16+16=32=42.AB=\sqrt{(6-2)^2+(7-3)^2}=\sqrt{4^2+4^2}=\sqrt{16+16}=\sqrt{32}=4\sqrt{2}.

  • BC=(10โˆ’6)2+(3โˆ’7)2=42+(โˆ’4)2=16+16=32=42.BC=\sqrt{(10-6)^2+(3-7)^2}=\sqrt{4^2+(-4)^2}=\sqrt{16+16}=\sqrt{32}=4\sqrt{2}.

  • CD=(6โˆ’10)2+(โˆ’1โˆ’3)2=(โˆ’4)2+(โˆ’4)2=16+16=32=42.CD=\sqrt{(6-10)^2+(-1-3)^2}=\sqrt{(-4)^2+(-4)^2}=\sqrt{16+16}=\sqrt{32}=4\sqrt{2}.

  • DA=(2โˆ’6)2+(3โˆ’(โˆ’1))2=(โˆ’4)2+42=16+16=32=42.DA=\sqrt{(2-6)^2+(3-(-1))^2}=\sqrt{(-4)^2+4^2}=\sqrt{16+16}=\sqrt{32}=4\sqrt{2}.

All four sides are equal in length, each equal to 424\sqrt{2}.

  1. Verify that an adjacent pair of sides is perpendicular by computing the dot product of vectors ABโ†’ \overrightarrow{AB} and BCโ†’\overrightarrow{BC}.

  • ABโ†’=(6โˆ’2,โ€…โ€Š7โˆ’3)=(4,4).\overrightarrow{AB}=(6-2,\;7-3)=(4,4).

  • BCโ†’=(10โˆ’6,โ€…โ€Š3โˆ’7)=(4,โˆ’4).\overrightarrow{BC}=(10-6,\;3-7)=(4,-4).

  • Dot product: (4,4)โ‹…(4,โˆ’4)=4โ‹…4+4โ‹…(โˆ’4)=16โˆ’16=0.(4,4)\cdot(4,-4)=4\cdot4 + 4\cdot(-4)=16-16=0.

A zero dot product shows that ABโ†’\overrightarrow{AB} is perpendicular to BCโ†’\overrightarrow{BC}. Since all sides are equal and one pair of adjacent sides are perpendicular, the quadrilateral is a square.

Therefore, the given quadrilateral is a square.


Q12. The line segment joining the points A(1,2)A(1,2) and B(7,4)B(7,4) is extended beyond BB to a point CC such that AC=3ร—ABAC = 3\times AB. Find the coordinates of point CC.

Solution and Answer:
Vector ABโ†’=(7โˆ’1,โ€…โ€Š4โˆ’2)=(6,2).\overrightarrow{AB}=(7-1,\;4-2)=(6,2).
If AC=3ร—ABAC=3\times AB as vectors, then ACโ†’=3โ‹…ABโ†’=(18,6).\overrightarrow{AC}=3\cdot\overrightarrow{AB}=(18,6). Since ACโ†’=ACโ†’=(xCโˆ’1,โ€…โ€ŠyCโˆ’2)\overrightarrow{AC}=\overrightarrow{A C}=(x_C-1,\; y_C-2), we have

  • xCโˆ’1=18โ‡’xC=19.x_C – 1 = 18 \Rightarrow x_C = 19.

  • yCโˆ’2=6โ‡’yC=8.y_C – 2 = 6 \Rightarrow y_C = 8.

Therefore, the coordinates of CC are (19,8)(19,8).

(Remark: this places CC beyond BB on the same straight line, at a distance three times ABAB from AA.)


Q13. A point PP divides the line segment joining A(4,โˆ’3)A(4,-3) and B(โˆ’2,6)B(-2,6) internally in the ratio 3:23:2. Find the coordinates of PP using the section formula.

Solution and Answer:
Using the internal section formula with m:n=3:2m:n = 3:2, where mm corresponds to the portion toward BB in the chosen convention x=mx2+nx1m+nx=\dfrac{m x_2 + n x_1}{m+n}, we set x1=4,y1=โˆ’3,โ€…โ€Šx2=โˆ’2,y2=6,โ€…โ€Šm=3,n=2x_1=4,y_1=-3,\;x_2=-2,y_2=6,\;m=3,n=2:

Compute xx coordinate:

x=3โ‹…(โˆ’2)+2โ‹…43+2=โˆ’6+85=25.x=\frac{3\cdot(-2)+2\cdot 4}{3+2}=\frac{-6+8}{5}=\frac{2}{5}.

Compute yy coordinate:

y=3โ‹…6+2โ‹…(โˆ’3)3+2=18โˆ’65=125.

Therefore, P(25,โ€…โ€Š125)P\left(\dfrac{2}{5},\;\dfrac{12}{5}\right).


Q14. Write the coordinates of the reflection of the point A(5,โˆ’4)A(5,-4):

(a) In the x-axis
(b) In the y-axis

Answer:
Reflection rules: reflection in the x-axis changes the sign of the y-coordinate only; reflection in the y-axis changes the sign of the x-coordinate only.

(a) Reflection of A(5,โˆ’4)A(5,-4) in the x-axis is (5,4)(5,4).
(b) Reflection of A(5,โˆ’4)A(5,-4) in the y-axis is (โˆ’5,โˆ’4)(-5,-4).


Q15. If the midpoint of the line segment joining the points A(2,x)A(2,x) and B(4,6)B(4,6) is (3,5)(3,5), find the value of xx.

Solution and Answer:
Midpoint formula gives

(2+42,โ€…โ€Šx+62)=(3,5).\left(\frac{2+4}{2},\; \frac{x+6}{2}\right)=(3,5).

Compute the x-coordinate check: 2+42=62=3\dfrac{2+4}{2}=\dfrac{6}{2}=3 (consistent). Now equate the y-coordinate:

x+62=5โ‡’x+6=10โ‡’x=4.\frac{x+6}{2}=5 \Rightarrow x+6=10 \Rightarrow x=4.

Therefore, x=4x=4.


Share/Assign

Here you can switch between educational tools ( Study & Assess) By Filtering Or Search for Title.

Coordinate Geometry โ€“ Class 9 Mathematics

Back to Home๐Ÿก

Comments

Leave a Reply

wpChatIcon
    wpChatIcon
    error: Content is protected !!
    Scan the code
    Verified by MonsterInsights